Support Vector Machines支持向量机

Supervised learning

Supervised learning

- An agent or machine is given N sensory inputs $D=\left\{x_{1}, x_{2} \ldots, x_{N}\right\}$, as well as the desired outputs $y_{1}, y_{2}, \ldots y_{N}$, its goal is to learn to produce the correct output given a new input.
- Given D what can we say about $\mathrm{x}_{\mathrm{N}+1}$?

Classification: $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{N}}$ are discrete class labels, learn a labeling function $f(\mathbf{x}) \mapsto y$

- Naïve bayes
- Decision tree
- K nearest neighbor
- Least squares classification

Classification

Classification

= learning from labeled data. Dominant problem in Machine Learning

Linear Classifiers

Binary classification can be viewed as the task of separating classes in feature space（特征空间）：

Linear Classification

Which of the linear separators is optimal?

Classification Margin (间距)

- Geometry of linear classification
- Discriminant function

$$
\hat{y}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+b
$$

- Important: the distance does not change if we scale

$$
\mathbf{w} \rightarrow a \mathbf{w}, b \rightarrow a \cdot b
$$

Classification Margin（间距）

Distance from example \mathbf{x}_{i} to the separator is $r=\frac{\left|\mathbf{w}^{T} \mathbf{x}_{i}+b\right|}{\|\mathbf{w}\|}$
Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a data point
Examples closest to the hyperplane（超平面）are support vectors（支持向量）．
Margin m of the separator is the distance between support vectors．

Maximum Margin Classification

最大间距分类Maximizing the margin is good according to intuition and PAC theory．
Implies that only support vectors matter；other training examples are ignorable．

Maximum Margin Classification

最大间距分类Maximizing the margin is good according to intuition and PAC theory．
Implies that only support vectors matter；other training examples are ignorable．

Maximum Margin Classification Mathematically

Let training set $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1 . . N^{N}}, \mathbf{x}_{i} \in \mathbf{R}^{d}, y_{i} \in\{-1,1\}$ be separated by a hyperplane with margin m. Then for each training example (\mathbf{x}_{i}, y_{i}):

$$
\begin{aligned}
& \mathbf{w}^{\top} \mathbf{x}_{i}+b \leq-c \quad \text { if } y_{i}=-1 \\
& \mathbf{w}^{\top} \mathbf{x}_{i}+b \geq c \quad \text { if } y_{i}=1
\end{aligned} \quad \Leftrightarrow \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq c
$$

For every support vector \mathbf{x}_{s} the above inequality is an equality. $y_{s}\left(\mathbf{w}^{\top} \mathbf{x}_{s}+b\right)=c$

In the equality, we obtain that distance between each \mathbf{x}_{s} and the hyperplane is

$$
r=\frac{\left|\mathbf{w}^{T} \mathbf{x}_{s}+b\right|}{\|\mathbf{w}\|}=\frac{\mathbf{y}_{s}\left(\mathbf{w}^{T} \mathbf{x}_{s}+b\right)}{\|\mathbf{w}\|}=\frac{c}{\|\mathbf{w}\|}
$$

Maximum Margin Classification Mathematically

Then the margin can be expressed through \mathbf{w} and b ：

$$
m=2 r=\frac{2 c}{\|\mathbf{w}\|}
$$

Here is our Maximum Margin Classification problem：

$$
\begin{array}{lll}
\max _{\mathbf{w}, b} \frac{2 c}{\|\mathbf{w}\|} & \text { subject to } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq c, \forall i \\
\max _{\mathbf{w}, b} \frac{c}{\|\mathbf{w}\|} & \text { subject to } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq c, \forall i
\end{array}
$$

Note that the magnitude（大小）of c merely scales \mathbf{w} and b ，and does not change the classification boundary at all！

So we have a cleaner problem：

$$
\max _{\mathbf{w}, b} \frac{1}{\|\mathbf{w}\|} \text { subject to } y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \forall i
$$

This leads to the famous Support Vector Machines 支持向量机 — believed by many to be the best＂off－the－shelf＂supervised learning algorithm

Learning as Optimization

Parameter Learning

Support Vector Machine

－A convex quadratic programming（凸二次规划） problem with linear constraints：

$$
\max _{\mathbf{w}, b} \frac{1}{\|\mathbf{w}\|} \quad \text { subject to } \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \forall i
$$

－The attained margin is now given by $\frac{1}{\|\mathbf{W}\|}$

－Only a few of the classification constraints are relevant \rightarrow support vectors
－Constrained optimization（约束优化）
－We can directly solve this using commercial quadratic programming （QP）code
－But we want to take a more careful investigation of Lagrange duality （对偶性），and the solution of the above in its dual form．
－deeper insight：support vectors，kernels（核）．．．

Quadratic Programming

Minimize（with respect to x ）

$$
g(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}
$$

Subject to one or more constraints of the form：

$$
\begin{array}{lc}
A \mathbf{x} \leq \mathbf{b} & \text { (inequality constraint) } \\
E \mathbf{x}=\mathbf{d} & \text { (equality constraint) }
\end{array}
$$

If $Q \succeq 0$ ，then $g(\boldsymbol{x})$ is a convex function（凸函数）：In this case the quadratic program has a global minimizer

Quadratic program of support vector machine：

$$
\min _{\mathbf{W}, b} \mathbf{w}^{\top} \mathbf{w} \quad \text { subject to } \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \forall i
$$

Solving Maximum Margin Classifier

Our optimization problem:

$$
\begin{equation*}
\min _{\mathbf{w}, b} \mathbf{w}^{\top} \mathbf{w} \quad \text { subject to } \quad 1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \leq 0, \forall i \tag{1}
\end{equation*}
$$

The Lagrangian:

$$
\begin{aligned}
L(\mathbf{w}, b, \alpha) & =\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right] \\
& =\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+\sum_{i=1}^{n} \alpha_{i}\left[1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right]
\end{aligned}
$$

Consider each constraint:

$$
\begin{aligned}
\max _{\alpha_{i} \geq 0} \alpha_{i}\left[1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right] & =0 & & \text { if } \mathbf{w}, \mathrm{b} \text { satisfies primal constraints } \\
& =\infty & & \text { otherwise }
\end{aligned}
$$

Solving Maximum Margin Classifier

Our optimization problem：

$$
\begin{equation*}
\min _{\mathbf{w}, b} \mathbf{w}^{\top} \mathbf{w} \quad \text { subject to } \quad 1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \leq 0, \forall i \tag{1}
\end{equation*}
$$

The Lagrangian：

$$
L(\mathbf{w}, b, \alpha)=\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right]
$$

Lemma：

$$
\begin{aligned}
\max _{\alpha \geq 0} L(\mathbf{w}, b, \alpha) & =\frac{1}{2} \mathbf{w}^{\top} \mathbf{w} & & \text { if } \mathbf{w}, \mathrm{b} \text { satisfies primal constraints } \\
& =\infty & & \text { otherwise }
\end{aligned}
$$

（1）can be reformulated as $\quad \min _{\mathbf{w}, b} \max _{\alpha \geq 0} L(\mathbf{w}, b, \alpha)$
The dual problem（对偶问题）： $\max _{\alpha \geq 0} \min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$

The Dual Problem（对偶问题）

$$
\max _{\alpha \geq 0} \min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)
$$

We minimize L with respect to \mathbf{w} and b first：

$$
\begin{gather*}
\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha)=\mathbf{w}^{\top}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top}=0 \tag{2}\\
\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha)=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \tag{3}
\end{gather*}
$$

Note：$d(\mathbf{A x}+\mathbf{b})^{T}(\mathbf{A x}+\mathbf{b})=\left(2(\mathbf{A x}+\mathbf{b})^{T} \mathbf{A}\right) d \mathbf{x}$

$$
d\left(\mathbf{x}^{T} \mathbf{a}\right)=d\left(\mathbf{a}^{T} \mathbf{x}\right)=\mathbf{a}^{T} d \mathbf{x}
$$

Note that the bias term b dropped out but had produced a ＂global＂constraint on α

The Dual Problem（对偶问题）

$$
\max _{\alpha \geq 0} \min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)
$$

We minimize L with respect to \mathbf{w} and b first：

$$
\begin{gather*}
\frac{\partial L}{\partial \mathbf{w}} L(\mathbf{w}, b, \alpha)=\mathbf{w}^{\top}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top}=0 \tag{2}\\
\frac{\partial L}{\partial \mathbf{b}} L(\mathbf{w}, b, \alpha)=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0 \tag{3}
\end{gather*}
$$

Note that（2）implies

$$
\begin{equation*}
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \tag{4}
\end{equation*}
$$

Plug（4）back to L，and using（3），we have

$$
L(\mathbf{w}, b, \alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)
$$

The Dual Problem（对偶问题）

Now we have the following dual optimization problem：

$$
\begin{array}{rc}
\max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right) & \text { subject to } \\
\alpha_{i} \geq 0, \forall i \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}
$$

This is a quadratic programming problem again
－A global maximum can always be found

But what＇s the big deal？
1． w can be recovered by $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$
2． b can be recovered by $\quad b=y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}$ for any it that $\alpha_{i} \neq 0$
3．The＂kernel＂一核 $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$ more later．．．

Support Vectors

If a point $\mathbf{x}_{\mathbf{i}}$ satisfies $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>1$

Due to the fact that

$$
\begin{aligned}
\max _{\alpha_{i} \geq 0} \alpha_{i}\left[1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right] & =0 \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \\
& =\infty \quad \text { otherwise }
\end{aligned}
$$

We have $\alpha^{*}=0 ; \mathbf{x}_{i}$ not a support vector
\mathbf{w} is decided by the points with non-zero α 's

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

Support Vectors

only a few α_{i} 's can be nonzero!!

Support Vector Machines

Once we have the Lagrange multipliers α_{i}, we can reconstruct the parameter vector \mathbf{w} as a weighted combination of the training examples:

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=\sum_{i \in S V} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

For testing with a new data \mathbf{x}^{\prime}
Compute $\mathbf{w}^{\top} \mathbf{x}^{\prime}+b=\sum_{i \in S V} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}^{\mathbf{\prime}}\right)+b$
and classify \mathbf{x}^{\prime} as class 1 if the sum is positive, and class 2 otherwise

Note: w need not be formed explicitly

Interpretation（解释）of support vector machines

－The optimal \mathbf{w} is a linear combination of a small number of data points．This＂sparse稀疏＂representation can be viewed as data compression（数据压缩）as in the construction of kNN classifier
－To compute the weights α_{i} ，and to use support vector machines we need to specify only the inner products内积（or kernel）between the examples $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$
－We make decisions by comparing each new example \mathbf{x}^{\prime} with only the support vectors：

$$
y^{*}=\operatorname{sign}\left(\sum_{i \in S V} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}^{\prime}\right)+b\right)
$$

Soft Margin Classification

What if the training set is not linearly separable？
Slack variables（松弛变量）ξ_{i} can be added to allow misclassification of difficult or noisy examples，resulting margin called soft．

Soft Margin Classification Mathematically

＂Hard＂margin QP：

$$
\min _{\mathbf{w}, b} \mathbf{w}^{\top} \mathbf{w} \quad \text { subject to } \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \forall i
$$

Soft margin QP：

$$
\begin{array}{r}
\min _{\mathbf{w}, b} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i} \xi_{i} \quad \text { subject to } \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \forall i \\
\xi_{i} \geq 0, \forall i
\end{array}
$$

$>$ Note that $\xi_{i}=0$ if there is no error for $\mathbf{x}_{\mathbf{i}}$
$>\xi_{i}$ is an upper bound of the number of errors
$>$ Parameter C can be viewed as a way to control＂softness＂：it ＂trades off（折衷，权衡）＂the relative importance of maximizing the margin and fitting the training data（minimizing the error）．
－Larger C \rightarrow more reluctant to make mistakes

The Optimization Problem

The dual of this new constrained optimization problem is

$$
\begin{aligned}
\max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right) \quad \text { subject to } & 0 \leq \alpha_{i} \leq C, \forall i \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_{i} now

Once again, a QP solver can be used to find α_{i}

Roadmap

SVM
Prediction

Loss in SVM

$\min _{\mathbf{W}, b, \xi} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i} \xi_{i}$ subject to $\quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \forall i$

$$
\xi_{i} \geq 0, \forall i
$$

Loss is measured as

$$
\xi_{i}=\max \left(0,1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)=\left[1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right]_{+}
$$

This loss is known as hinge loss
$\min _{\mathbf{w}, b} \frac{1}{2 C} \mathbf{w}^{\top} \mathbf{w}+\sum_{i}$ hingeloss $_{i}$

Loss functions

- Regression
- Squared loss L_{2}
- Absolute loss L_{1}
- Binary classification
- Zero/one loss $L_{0 / 1}$ (no good algorithm)
- Squared loss L_{2}
- Absolute loss L_{1}
- Hinge loss (Support vector machines)
- Logistic loss (Logistic regression)

Linear SVMs: Overview

The classifier is a separating hyperplane.

Most "important" training points are support vectors; they define the hyperplane.

Quadratic optimization algorithms can identify which training points \mathbf{x}_{i} are support vectors with non-zero Lagrangian multipliers α_{i}.

Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

```
Find }\mp@subsup{\alpha}{1}{\ldots.. \mp@subsup{\alpha}{N}{}}\mathrm{ such that
```



```
(1) }\sum\mp@subsup{\alpha}{i}{}\mp@subsup{y}{i}{}=
(2)}0\leq\mp@subsup{\alpha}{i}{}\leqC\mathrm{ for all }\mp@subsup{\alpha}{i}{
```

$f(\mathbf{x})=\sum \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x}+b$

Non-linearity: example

- Input x:
- Patient information and vital signs
- Output y:
- Health (positive is good)

Features in linear space

- Philosophy: extract any features that might be relevant.
- Features for medical diagnosis: height, weight, body temperature, blood pressure, etc.
- Three problems: non-monotonicity, nonlinearity, interactions between features

Non-monotonicity

- Features: $\phi(x)=(1 ;$ temperature $(x))$
- Output: health y
- Problem: favor extremes; true relationship is non-monotonic

Non-monotonicity

- Solution: transform inputs
- $\phi(x)=\left(1 ;(\text { temperature }(x)-37)^{2}\right)$
- Disadvantage: requires manually-specied domain knowledge

Non-monotonicity

- $\phi(x)=\left(1\right.$; temperature (x); temperature $\left.(x)^{2}\right)$
- General: features should be simple building blocks to be pieced together

Interaction between features

- $\phi(x)=($ height $(x) ;$ weight $(x))$
- Output: health y
- Problem: can't capture relationship between height and weight

Interaction between features

- $\phi(x)=(\text { height }(x)-\text { weight }(x))^{2}$
- Solution: define features that combine inputs
- Disadvantage: requires manually-specified domain knowledge

Interaction between features

- $\phi(x)=\left[\right.$ height $(x)^{2} ;$ weight $(x)^{2}$; height (x) weight $\left.(x)\right]$
cross term
- Solution: add features involving multiple measurements

Linear in what?

Prediction driven by score: w $\cdot \phi(x)$

- Linear in w? Yes
- Linear in $\phi(x)$? Yes
- Linear in x ? No!

Key idea: non-linearity

- Predictors $f_{w}(x)$ can be expressive non-linear functions and decision boundaries of x.
- Score w $\cdot \phi(x)$ is linear function of w and $\phi(x)$

Non-linear SVMs

Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

Recall the SVM optimization problem

$$
\begin{aligned}
\max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right) \quad \text { subject to } \quad & 0 \leq \alpha_{i} \leq C, \forall i \\
& \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

The data points only appear as inner product

- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products

Define the kernel function K by $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\mathbf{T}} \phi\left(\mathbf{x}_{j}\right)$

Kernel methods

- Features viewpoint: construct and work with $\phi(\mathbf{x})$ (think in terms of properties of inputs)
- Kernel viewpoint: construct and work with $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ (think in terms of similarity between inputs)

An Example for feature mapping and kernels

- Consider an input $\mathbf{x}=\left[x_{1}, x_{2}\right]$
- Suppose $\phi($.$) is given as follows$

$$
\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}
$$

- An inner product in the feature space is

$$
\left\langle\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right), \phi\left(\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]\right)\right\rangle=
$$

- So, if we define the kernel function as follows, there is no need to carry out $\phi($.$) explicitly$

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{2}
$$

More Examples of Kernel Functions

－Linear：$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}$
－Mapping $\Phi: \mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$ ，where $\varphi(\mathbf{x})$ is \mathbf{x} itself

- Polynomial（多项式）of power $p: K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}\right)^{p}$
- Gaussian（radial－basis function径向基函数）：$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{\mathbf{i}}\right\|^{2}}{\sigma^{2}}}$
－Mapping $\Phi: \mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$ ，where $\varphi(\mathbf{x})$ is infinite－dimensional
－Higher－dimensional space still has intrinsic dimensionality d， but linear separators in it correspond to non－linear separators in original space．

Kernel matrix

Suppose for now that K is indeed a valid kernel corresponding to some feature mapping ϕ ，then for $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ ，we can compute an $n \times n$ matrix $\left\{K_{i, j}\right\}$ where $K_{i, j}=\boldsymbol{\varphi}\left(\mathbf{x}_{i}\right)^{\mathbf{T}} \boldsymbol{\varphi}\left(\mathbf{x}_{j}\right)$

This is called a kernel matrix！

Now，if a kernel function is indeed a valid kernel，and its elements are dot－product in the transformed feature space，it must satisfy：
－Symmetry $K=K^{T}$
－Positive－semidefinite（半正定） $\mathbf{z}^{\top} K \mathbf{z} \geq 0, \quad \forall \mathbf{z} \in R^{n}$

Matrix formulation

$$
\begin{array}{rc}
& \max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
= & \max _{\alpha} \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{i, j} \\
= & \max _{\alpha} \alpha^{\top} \mathbf{e}-\frac{1}{2} \alpha^{\top}\left(\mathbf{y y}^{\top} \circ K\right) \alpha \\
\text { subject to } & 0 \leq \alpha_{i} \leq C, \forall i \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}
$$

Nonlinear SVMs - RBF Kernel

Summary: Support Vector Machines

Linearly separable case \rightarrow Hard margin SVM

- Primal quadratic programming
- Dual quadratic programming

Not linearly separable? \rightarrow Soft margin SVM

Non-linear SVMs

- Kernel trick

Summary：Support Vector Machines

SVM training：build a kernel matrix K using training data
－Linear：$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}$
－Gaussian（radial－basis function径向基函数）：$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\frac{\| \mathbf{x}_{i}-\left.\mathbf{x}_{j}\right|^{2}}{\sigma^{2}}}$
solve the following quadratic program

$$
\begin{array}{cc}
\max _{\alpha} \alpha^{\top} \mathbf{e}-\frac{1}{2} \alpha^{\top}\left(\mathbf{y y}^{\top} \circ K\right) \alpha \\
\text { subject to } & 0 \leq \alpha_{i} \leq C, \forall i \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}
$$

SVM testing：now with α_{i} ，recover b ，

$$
b=y_{i}-\sum_{j=1}^{n} \alpha_{j} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \quad \text { for any i that } \alpha_{i} \neq 0
$$

we can predict new data points by：

$$
y^{*}=\operatorname{sign}\left(\sum_{i \in S V} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}^{\prime}\right)+b\right)
$$

作业

－已知正例点 $x_{1}=(1,2)^{\mathrm{T}}, x_{2}=(2,3)^{\mathrm{T}}, x_{3}=(3,3)^{\mathrm{T}}$ ，
负例点 $x_{4}=(2,1)^{\mathrm{T}}, x_{5}=(3,2)^{\mathrm{T}}$ ，试求Hard Margin SVM的最大间隔分离超平面和分类决策函数，并在图上画出分离超平面，间隔边界及支十卉

