Support Vector Machines
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Supervised learning

Supervised learning

— An agent or machine is given N sensory inputs D = {x;, x, . . ., Xy}, as well
as the desired outputsy,, y,, . . .Yy, its goal is to learn to produce the
correct output given a new input.

— Given D what can we say about x,,?

Classification: y,, y,, . . . yy are discrete class labels, learn a labeling
function f(X)I>y
— Naive bayes
— Decision tree
— K nearest neighbor
— Least squares classification



Classification

Classification

= learning from labeled data. Dominant problem in
Machine Learning
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Linear Classifiers

Binary classification can be viewed as the task of
separating classes in feature space CRp{iE=¥[E]) -

wix+b=0

wix+b<0

¢ Decide

otherwise
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Linear Classification

Which of the linear separators is optimal?




Classification Margin (] )

Geometry of linear classification
Discriminant function

~

j(x) =w'x+b y=0

Important: the distance does

not change if we scale
w—aw,b—a-b
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Classification Margin ([a]f

Distance from example x; to the separatoris I = '

Define the margin of a linear classifier as the width that the boundary could be increased
by before hitting a data point

Examples closest to the hyperplane (Vi) are support vectors (S FFHI=) .
Margin m of the separator is the distance between support vectors.
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Maximum Margin Classification
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Maximizing the margin is good according to intuition and PAC
theory.

Implies that only support vectors matter; other training
examples are ignorable.




Maximum Margin Classification
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Maximizing the margin is good according to intuition and PAC

theory.

Implies that only support vectors matter; other training
examples are ignorable.

How do we compute m
in term of wand b?




Maximum Margin Classification
Mathematically

Let training set {(x; y))}i—1 p» X;€RY, y; € {-1, 1} be separated by a hyperplane with
margin m. Then for each training example (x, y,):

wix,+b<-c ify=-1

(W, + b) 2 C
wix.+b2c ify=1 < viwxi+b)

For every support vector x,
the above inequality is an equality.
y(wix.+b)= ¢

In the equality, we obtain that
distance between each x,and

the hyperplane is
CJwix +b] y (w'x,+b)
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Maximum Margin Classification
Mathematically

Then the margin can be expressed through w and b:

2C
m=2r = —
[w]
Here is our Maximum Margin Classification problem:
2c
" subject to y;(w'x; +b) > ¢, Vi
max T subject to y; (W x; +b) > ¢, Vi
C . T .
ax —— subject to y; . +b) >,V
wo [wl| yi(W % +0) 2 ¢, Vi

Note that the magnitude (K/]N) of c merely scales w and b, and does not

change the classification boundary at all!

So we have a cleaner problem:
1
— subject to y;(w'x; +b) > 1,Vi
max Tl subject to y;(w' x; +b) > 1,Vi

This leads to the famous Support Vector Machines % #F 5 & #l. — believed by

many to be the best "off-the-shelf" supervised learning algorithm



Learning as Optimization

Parameter Learning

Objective . Optimization
Function Algorithm
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Support Vector Machine
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* A convex quadratic programming ( lﬂléﬁ\ﬁbﬂ) %o c
problem with linear constraints: VAR
max —— subject to y;(w'x; +b) > 1,Vi OO e G womtbn
Wb ”WH " o wk-b=0
. . . . 1 w - :bz—l
— The attained margin is now given by Jw| o

— Only a few of the classification constraints are relevant
—> support vectors

« Constrained optimization (ZJHALAL)

— We can directly solve this using commercial quadratic programming
(QP) code

— But we want to take a more careful investigation of Lagrange duality
(B |, and the solution of the above in its dual form.

— deeper insight: support vectors, kernels (%)



Quadratic Programming

Minimize (with respect to x)

g(x) = %XTQX—I—CTX .

Subject to one or more constraints of the form:

Ax <b (inequality constraint) .

Ex=d (equality constraint)

Sitx+(1-1)y)

tfix) + (1 =0 fiy)

X

Ix+ (I-t)y

If Q>0, then g(X) is a convex function (F4p8%T) : In this case

the quadratic program has a global minimizer

Quadratic program of support vector machine:

rvr‘lfirg w'w subject to y;(w'x; +0b) > 1,V

y



Solving Maximum Margin Classifier

Our optimization problem:

I‘alfi%l w'w subject to 1—y;(w'x;+b)<0,Vi (1)

The Lagrangian:

L(w,b,a) = §WTW — ; a; [yi(w'x; +b) — 1]
1 mn
= §WTW + ; Q; [1 y@(WTXZ + b)}
Consider each constraint:
max o [1 — y,,;(WTXZ- + b)} = 0 if w, b satisfies primal constraints

(8%} 20
= 0 otherwise



Solving Maximum Margin Classifier

Our optimization problem:

%i% w'w subject to 1—y;(w'x;+b)<0,Vi (1)

The Lagrangian:

L(w,b,a) = %WTW - ZC}!Z' [yi (W' x; +b) — 1]
Lemma: -
Iélg(})(L(W, ba)= sw'w if w, b satisfies primal constraints
} = 00 otherwise
(1) can be reformulated as minw » Max,>o L(w, b, @)

The dual problem 448 7] & ) ' Max,>o minw p L(w, b, &)
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The Dual Problem (Xf#

max min L(w, b, )
a>0 W,b

We minimize L with respect to w and b first:

oL T\ T
8_WL(W ba)=w' — E a;yix; =0
oL
@—bL w,b, a) E a;y; =0

Note: d(Ax+b)T(Ax+b) = (2(Ax+b)TA) dx
d(x'a) = d(a™) = a' dx

Note that the bias term b dropped out but had produced a

“global” constraint on «

17



The Dual Problem CXHAR]

max min L(w, b, )
a>0 W,b

We minimize L with respect to w and b first:

L
2—WL(W ba) =w' — Zaiy,,;xj =0

oL
a—waba Z()zzyz—o

Note that (2) implies

n
W — g QY X;

Plug (4) back to L, and usmg (3), we have

L(w,b,a) Za% — — Z oYY (X, xj)

zgl



The Dual Problem 748 Ja] /i)

Now we have the following dual optimization problem:

n n
maXZai 1 Z oy, (X x;)  subject to a; >0,V
R 2 i,j=1
2 i1 i =0
This is a quadratic programming problem again
— A global maximum can always be found

But what’s the big deal?
1. wcan berecoveredby w = Zle Q;YiX;

2. bcanberecoveredby b=y, —w'x; for any i that a; # 0
3. The “kernel”—#% x x; more later...



Support Vectors

If a point x; satisfies yi(w'x; +b) > 1

Due to the fact that
mé;% QU [1 - yi(WTxi + b)} = 0 yi(wa,,; +b) > 1

= o0 otherwise

We have o* =0; x; not a support vector

W is decided by the points with non-zero a’s

T
W — Zf,;zl Qi YiX;



Support Vectors

only a few a.'s can be nonzero!!

Class 2 Call the training data points
03=0.6 @t10=0 whose ¢;'s are nonzero the
O / support vectors (SV)
A%% 5=
?_ —
o5 =0 o diz_ﬂ
H © =08
a,=0 ]
|:| |:| (1{1_—1.4 WT.K _I_b — 1
{Ig:O _ 1 .
Clace 1 a3=0 ..W x+b=0
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Support Vector Machines

Once we have the Lagrange multipliers a,, we can reconstruct
the parameter vector W as a weighted combination of the
training examples:

n
W= X = Zz‘eSV QY Xy

For testing with a new data x’
Compute w'x’+b=> o, aiyi(x; x’) +b

and classify X’ as class 1 if the sum is positive, and class 2
otherwise

Note: W need not be formed explicitly



Interpretation (&%) of support
vector machines

 The optimal wis a linear combination of a small number of
data points. This “sparsef4iiii” representation can be viewed
as data compression (E{#&JE4g) asin the construction of

kNN classifier

* To compute the weights a;, and to use support vector
machines we need to specify only the inner products N X (or
kernel) between the examples x, x;

* We make decisions by comparing each new example x’ with
only the support vectors:

y* = sign (Siegy i (%) + D)



Soft Margin Classification

What if the training set is not linearly separable?

Slack variables (#4'4t445 ) & can be added to allow
misclassification of difficult or noisy examples, resulting
margin called soft.




Soft Margin Classification
Mathematically

“Hard” margin QP:
Ivr‘lri% w'w subject to y;(w' x; +b) > 1,Vi

Soft margin QP:

1+ . T .
%{Ibl§w W-{—CZ& subject to yi(w'x; +b) > 1—¢&,Vi

» Note that §=0 if there is no error for x;

» & is an upper bound of the number of errors

» Parameter C can be viewed as a way to control “softness”: it
“trades off (#T, FUf#7) ” the relative importance of maximizing
the margin and fitting the training data (minimizing the error).

— Larger C = more reluctant to make mistakes



The Optimization Problem

The dual of this new constrained optimization problem is

n n

1

max E =g E ;o5 (%) x;) subject to 0 < a; < C,Vi
i=1 ij=1

2?21 a;y; = 0

This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound Con o,
now

Once again, a QP solver can be used to find a.



Roadmap

SVM
Prediction

Loss
Minimization
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Loss in SVM

évn%)ng §wTw - CZ & subject to yi(w'x; +b)>1—§&,Vi

Loss is measured as
& =max (0,1 —y;(w'x; +)) = [1 —y;(w'x; +b)]4

This loss is known as hinge loss

] L(yf(x))

%1%1 %WTW -+ Z hingeloss;

hinge

0 i)
fx)=w'x+b ~



Loss functions

* Regression
— Squared loss L,
— Absolute loss L,

* Binary classification
— Zero/one loss L/, (no good algorithm)
— Squared loss L,
— Absolute loss L,
— Hinge loss (Support vector machines)
— Logistic loss (Logistic regression)



Linear SVMs: Overview

The classifier is a separating hyperplane.

Most “important” training points are support vectors; they define the
hyperplane.

Quadratic optimization algorithms can identify which training points x;are
support vectors with non-zero Lagrangian multipliers a.

Both in the dual formulation of the problem and in the solution training
points appear only inside inner products:

Find a,...a, such that f(x) = )Xo ,-X,-TX +b
Q(a) =2 - 1/zZZoz,-ozjy,y is maximized and

(1) 2ay;=0

(2) 0 ;s Cforalla;
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Non-linearity: example

* |nput X:

— Patient information and vital signs
* Outputy:

— Health (positive is good)



Features in linear space

* Philosophy: extract any features that might be
relevant.

* Features for medical diagnosis: height, weight,
body temperature, blood pressure, etc.

* Three problems: non-monotonicity, non-
linearity, interactions between features

34



Non-monotonicity

* Features: ¢(x) = (1; temperature(x))
* QOutput: healthy

* Problem: favor extremes; true relationship is
non-monotonic

35



Non-monotonicity

e Solution: transform inputs
* d(x) =(1; (temperature(x)-37)?)

* Disadvantage: requires manually-specied
domain knowledge

36



Non-monotonicity

* d(x) = (1; temperature(x); temperature(x)?)

* General: features should be simple building
blocks to be pieced together



Interaction between features

e ¢(x) = (height(x); weight(x))

* QOutput: healthy

* Problem: can't capture relationship between
height and weight



Interaction between features

o d(x) = (height(x)-weight(x))?

* Solution: define features that combine inputs

* Disadvantage: requires manually-specified
domain knowledge



Interaction between features

o d(x)=[height(x)%;weight(x)?; height(x)weight(x)]

Ccross term

* Solution: add features involving multiple
measurements



Linear in what?

Prediction driven by score: w - ¢(x)
— Linear in w? Yes
— Linear in ¢(x)? Yes
— Linearin x? No!

Key idea: non-linearity

— Predictors f, (x) can be expressive non-linear
functions and decision boundaries of x.

— Score w - ¢(x) is linear function of w and ¢(x)



Non-linear SVMs

Datasets that are linearly separable with some noise work out great:

== |©—0 :X

But what are we going to do if the dataset is just too hard?

*—0 *—0— o0—0 *—0 *—
0 X

How about... mapping data to a higher-dimensional space:
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Non-linear SVMs: Feature spaces

General idea: the original feature space can always be mapped
to some higher-dimensional feature space where the training

set is separable:

. o
o .
e, .

‘e
* .
.,
0’.
K
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The “Kernel Trick”

Recall the SVM optimization problem
mgngai —3 'Zl Q0 Y Y (xiij) subject to 0<a; <C,Vi
1= 1,]=
Z?:]_ o;y; = 0
The data points only appear as inner product

* Aslong as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

« Many common geometric operations (angles, distances) can
be expressed by inner products

Define the kernel function K by K(x;,X))= ¢(x;) T d(x;)



Kernel methods

* Features viewpoint: construct and work with
¢(X) (think in terms of properties of inputs)

e Kernel viewpoint: construct and work with
K(X;,X;) (think in terms of similarity between
inputs)



An Example for feature mapping
and kernels

Consider an input x=[x,x]
Suppose ¢.) is given as follows
gﬂ[[:{l N = 1.42x,.42x,.xF . x% \2xx,
X |

An inner product in the feature space is

Al )-

So, If we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x.x')= (1+1T1')z
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More Examples of Kernel Functions

Linear: K(x;,X;)= X;"X;
— Mapping ®: X — @(X), where ¢(X) is X itself

Polynomial (Z I of power p: K(x;,x;)= (1+ X;T;)P

bl
Gaussian (radial-basis function4s [7] %% PR £%): K(X;,x;) =e o
— Mapping ©: X — @(X), where @(X) is infinite-dimensional

Higher-dimensional space still has intrinsic dimensionality d,
but linear separators in it correspond to non-linear separators
in original space.



Kernel matrix

Suppose for now that K is indeed a valid kernel corresponding to
some feature mapping ¢, then for x,, ..., x,, we can compute
an n X n matrix {K;;} where K;; = o(x;) To(x;)

This is called a kernel matrix!

Now, if a kernel function is indeed a valid kernel, and its
elements are dot-product in the transformed feature space, it
must satisfy:

— Symmetry K=KT
— Positive-semidefinite (*EIEE) z'Kz>0, Vze R"



Matrix formulation

MaXy Y g O — % szzl ;0595 K (X, X;)

n 1 n
mMaXe, Zi=1 Qi — 3 Zfi,jzl sz'Oéjyz'yjKi,j

subject to

max,a' e — 1a' (yy' o K)a

0 § (87 S C, \V/Z
> ieq iy =0
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Nonlinear SVMs — RBF Kernel

/ . '. ‘.
\ __’____,.-—.—M-EL .
F’.Er.- - .\E"‘“- .

\ L

E*mi__lég ..
. *‘E &l o
@

Gaussian \@j \

.

P

50



Summary: Support Vector Machines

Linearly separable case = Hard margin SVM
— Primal quadratic programming
— Dual quadratic programming

Not linearly separable? = Soft margin SVM

Non-linear SVMs

— Kernel trick
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Summary: Support Vector Machines

SVM training: build a kernel matrix K using training data
— Linear: K(X )_ XTX HX . HZ
— Gaussian (radial-basis functionf% [f] 3 & #]): K(x;,X)) =g o

solve the following quadratic program

max, o' e — ta' (yy' oK)«

subject to 0<a; <C,Vi
Z?:l o;y; = 0

SVM testing: now with o, recover b,
Z a;y; K(x;,x;) for any ithat a; # 0

we can predlct new data points by:
y* = sign (Z'LESV a;y; K (x;,%x°) + b)
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