
Support Vector Machines
支持向量机



Supervised learning

Supervised learning

– An agent or machine is given N sensory inputs D = {x1, x2 . . . , xN}, as well 
as the desired outputs y1, y2, . . . yN, its goal is to learn to produce the 
correct output given a new input.

– Given D what can we say about xN+1?

Classification: y1, y2, . . . yN are discrete class labels, learn a labeling 
function

– Naïve bayes

– Decision tree

– K nearest neighbor

– Least squares classification
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Classification

Classification

= learning from labeled data. Dominant problem in 
Machine Learning

+
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Linear Classifiers 
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Binary classification can be viewed as the task of 
separating classes in feature space（特征空间）:

wTx + b = 0

wTx + b < 0
wTx + b > 0

h(x) = sign(wTx + b)

Decide                      if wTx + b > 0, 
otherwise 



Linear Classification

Which of the linear separators is optimal? 
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Classification Margin（间距）

• Geometry of linear classification

• Discriminant function

• Important: the distance does

not change if we scale 
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Classification Margin（间距）

Distance from example xi to the separator is 

Define the margin of a linear classifier as the width that the boundary could be increased 
by before hitting a data point

Examples closest to the hyperplane（超平面） are support vectors （支持向量）.

Margin m of the separator is the distance between support vectors.
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Maximum Margin Classification
最大间距分类

Maximizing the margin is good according to intuition and PAC 
theory.

Implies that only support vectors matter; other training 
examples are ignorable. 
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Maximum Margin Classification
最大间距分类

Maximizing the margin is good according to intuition and PAC 
theory.

Implies that only support vectors matter; other training 
examples are ignorable. 

m
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How do we compute m
in term of w and b?



Maximum Margin Classification 
Mathematically 

Let training set {(xi, yi)}i=1..N, xiRd, yi {-1, 1} be separated by a hyperplane with
margin m. Then for each training example (xi, yi):

For every support vector xs

the above inequality is an equality.

ys(w
Txs + b) = c

In the equality, we obtain that 

distance between each xs and 

the hyperplane is 

wTxi + b ≤ - c   if yi = -1
wTxi + b ≥ c     if yi = 1
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Maximum Margin Classification 
Mathematically 

Then the margin can be expressed through w and b:

Here is our Maximum Margin Classification problem:

Note that the magnitude（大小） of c merely scales w and b, and does not 
change the classification boundary at all!

So we have a cleaner problem:

This leads to the famous Support Vector Machines 支持向量机 — believed by 
many to be the best "off-the-shelf" supervised learning algorithm
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Learning as Optimization
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Objective 
Function

Optimization 
Algorithm

Parameter Learning



Support Vector Machine

• A convex quadratic programming（凸二次规划）
problem with linear constraints:

– The attained margin is now given by
– Only a few of the classification constraints are relevant 

 support vectors

• Constrained optimization（约束优化）
– We can directly solve this using commercial quadratic programming 

(QP) code
– But we want to take a more careful investigation of Lagrange duality

（对偶性）, and the solution of the above in its dual form.
– deeper insight: support vectors, kernels（核） …

+
+

+
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Quadratic Programming

Minimize (with respect to x)

Subject to one or more constraints of the form:

If           , then g(x) is a convex function（凸函数）: In this case 
the quadratic program has a global minimizer

Quadratic program of support vector machine:

0 Q
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Solving Maximum Margin Classifier

Our optimization problem:

The Lagrangian:

Consider each constraint:
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Solving Maximum Margin Classifier

Our optimization problem:

The Lagrangian:

Lemma: 

(1) can be reformulated as

The dual problem（对偶问题）:  
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The Dual Problem（对偶问题）

We minimize L with respect to w and b first:

Note that the bias term b dropped out but had produced a 
“global” constraint on 

Note: d(Ax+b)T(Ax+b) = (2(Ax+b)TA) dx

d(xTa) = d(aTx) = aT dx
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The Dual Problem（对偶问题）

We minimize L with respect to w and b first:

Note that (2)  implies

Plug (4) back to L, and using (3), we have 
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The Dual Problem（对偶问题）

Now we have the following dual optimization problem:

This is a quadratic programming problem again
– A global maximum can always be found

But what’s the big deal?
1. w can be recovered by

2. b can be recovered by 

3. The “kernel”—核 more later…
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Support Vectors

If a point xi satisfies

Due to the fact that

We have

w is decided by the points with non-zero α’s 
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Support Vectors

only a few αi's can be nonzero!!
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Support Vector Machines

Once we have the Lagrange multipliers αi, we can reconstruct 
the parameter vector w as a weighted combination of the 
training examples:

For testing with a new data x’

Compute

and classify x’ as class 1 if the sum is positive, and class 2 
otherwise

Note: w need not be formed explicitly
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Interpretation（解释） of support 
vector machines

• The optimal w is a linear combination of a small number of 
data points. This “sparse稀疏” representation can be viewed 
as data compression（数据压缩） as in the construction of 
kNN classifier

• To compute the weights αi, and to use support vector 
machines we need to specify only the inner products内积 (or 
kernel) between the examples

• We make decisions by comparing each new example x’ with 
only the support vectors:
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Soft Margin Classification  

What if the training set is not linearly separable?

Slack variables（松弛变量） ξi can be added to allow 
misclassification of difficult or noisy examples, resulting 
margin called soft.

ξi

ξi
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Soft Margin Classification 
Mathematically

“Hard” margin QP:

Soft margin QP:

 Note that ξi=0 if there is no error for xi

 ξi is an upper bound of the number of errors
 Parameter C can be viewed as a way to control “softness”:  it 

“trades off（折衷，权衡）” the relative importance of maximizing 
the margin and fitting the training data (minimizing the error).
– Larger C more reluctant to make mistakes
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The Optimization Problem

The dual of this new constrained optimization problem is

This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on αi

now

Once again, a QP solver can be used to find αi
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Roadmap

28

SVM 
Prediction

Loss 
Minimization



Loss in SVM

Loss is measured as

This loss is known as hinge loss
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Loss functions

• Regression
– Squared loss L2

– Absolute loss L1

• Binary classification
– Zero/one loss L0/1 (no good algorithm)
– Squared loss L2

– Absolute loss L1

– Hinge loss (Support vector machines)
– Logistic loss (Logistic regression)
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Linear SVMs:  Overview

The classifier is a separating hyperplane.

Most “important” training points are support vectors; they define the 
hyperplane.

Quadratic optimization algorithms can identify which training points xi are 
support vectors with non-zero Lagrangian multipliers αi.

Both in the dual formulation of the problem and in the solution training 
points appear only inside inner products: 

Find α1…αN such that

Q(α) =Σαi - ½ ΣΣαiαjyiyjxi
Txj is maximized and 

(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b
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Non-linearity: example

• Input x:

– Patient information and vital signs

• Output y:

– Health (positive is good)
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Features in linear space

• Philosophy: extract any features that might be 
relevant.

• Features for medical diagnosis: height, weight, 
body temperature, blood pressure, etc. 

• Three problems: non-monotonicity, non-
linearity, interactions between features
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Non-monotonicity

• Features: φ(x) = (1; temperature(x))

• Output: health y 

• Problem: favor extremes; true relationship is 
non-monotonic
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Non-monotonicity

• Solution: transform inputs

• φ(x) = (1; (temperature(x)-37)2)

• Disadvantage: requires manually-specied
domain knowledge
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Non-monotonicity

• φ(x) = (1; temperature(x); temperature(x)2)

• General: features should be simple building 
blocks to be pieced together
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Interaction between features

• φ(x) = (height(x); weight(x))

• Output: health y 

• Problem: can't capture relationship between 
height and weight
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Interaction between features

• φ(x) = (height(x)-weight(x))2

• Solution: define features that combine inputs

• Disadvantage: requires manually-specified 
domain knowledge
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Interaction between features

• φ(x)=[height(x)2;weight(x)2; height(x)weight(x)]

cross term

• Solution: add features involving multiple 
measurements
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Linear in what?

Prediction driven by score: w · φ(x)
– Linear in w? Yes

– Linear in φ(x)? Yes

– Linear in x? No! 

Key idea: non-linearity
– Predictors fw(x) can be expressive non-linear 

functions and decision boundaries of x.

– Score w · φ(x) is linear function of w and φ(x)

41



Non-linear SVMs

Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard? 

How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x
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Non-linear SVMs:  Feature spaces

General idea:   the original feature space can always be mapped 
to some higher-dimensional feature space where the training 
set is separable:

Φ:  x → φ(x)
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The “Kernel Trick”

Recall the SVM optimization problem

The data points only appear as inner product

• As long as we can calculate the inner product in the feature 
space, we do not need the mapping explicitly

• Many common geometric operations (angles, distances) can 
be expressed by inner products

Define the kernel function K by  K(xi,xj)= φ(xi)
T φ(xj)
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Kernel methods

• Features viewpoint: construct and work with 
φ(x) (think in terms of properties of inputs)

• Kernel viewpoint: construct and work with 
K(xi,xj) (think in terms of similarity between 
inputs)
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An Example for feature mapping
and kernels
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More Examples of Kernel Functions

• Linear: K(xi,xj)= xi
Txj

– Mapping Φ: x → φ(x), where φ(x) is x itself

• Polynomial（多项式） of power p: K(xi,xj)= (1+ xi
Txj)

p

• Gaussian (radial-basis function径向基函数): K(xi,xj) =
– Mapping Φ:  x →  φ(x), where φ(x) is infinite-dimensional

• Higher-dimensional space still has intrinsic dimensionality d, 
but linear separators in it correspond to non-linear separators 
in original space.
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Kernel matrix

Suppose for now that K is indeed a valid kernel corresponding to 
some feature mapping φ, then for x1, …, xn, we can compute 
an n×n matrix {Ki,j} where Ki,j = φ(xi)

Tφ(xj)

This is called a kernel matrix!

Now, if a kernel function is indeed a valid kernel, and its 
elements are dot-product in the transformed feature space, it 
must satisfy:

– Symmetry K=KT

– Positive-semidefinite（半正定）
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Matrix formulation
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Nonlinear SVMs – RBF Kernel
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Summary: Support Vector Machines

Linearly separable case  Hard margin SVM
– Primal quadratic programming

– Dual quadratic programming

Not linearly separable?  Soft margin SVM

Non-linear SVMs
– Kernel trick
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Summary: Support Vector Machines

SVM training: build a kernel matrix K using training data
– Linear: K(xi,xj)= xi

Txj

– Gaussian (radial-basis function径向基函数): K(xi,xj) =

solve the following quadratic program

SVM testing: now with αi, recover b,

we can predict new data points by:
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作业

• 已知正例点 ，

负例点 ，试求Hard Margin 
SVM的最大间隔分离超平面和分类决策函数，

并在图上画出分离超平面、间隔边界及支
持向量。
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